Cursadas de verano

Movida para conseguir cursadas de verano en FFyB:
www.facebook.com/groups/711638622195783/

Cursos de verano en FFyB

Cursos de verano en FFyB
Chicos el martes a las 16.30 se va hacer la presentación para conseguir las cursadas de verano en FFYB,se que muchos estamos complicados con los horarios pero desde antidoto me dicen que para que el proyecto tome fuerzas tiene que haber bastante representación del alumnado. Muchos necesitamos de esta herramienta por el ritmo de vida que tenemos jeje.....SE NECESITA DEL APOYO DE TODOS no importa la ideología política sino el beneficio q podemos conseguir juntos por nuestras carreras ...............
El contenido de este blog no cuenta con el control ni la corrección de ninguna institución educativa, pública o privada. Las publicaciones de este blog son hechas de manera independiente por el autor del mismo. El autor de desliga de toda responsabilidad por posibles consecuencias derivadas del uso de los contenidos de este blog.
Muchas gracias por su visita, por favor, comentar si encuentra links caídos, los mismos serán resubidos a la brevedad.

viernes, 29 de agosto de 2014

Ejercicios resueltos: HPLC, espectrometría de masa, potenciometría directa, titulaciones potenciométricas, titulaciones en medios no acuosos.

Acá dejo los ejercicios de los temas que faltan de instrumental. Cualquier cosa pueden escribirme a romypech@yahoo.com.ar

HPLC: https://mega.co.nz/#!VVVlRRKL!aOyQcsgN0tnN9PjVvJ-CH2cgR3lmqr00_Iw5-KioAmY

Cuadro comparativo de métodos de ionización (masa): https://mega.co.nz/#!EV9FCbDI!9b7zL-_gbxmooalELJsJK0fIFVSek8ehYfZ3-eAn6-U
Masa I: https://mega.co.nz/#!UU9ymASY!a4qmL0Mvdcd32pdQMTheBoYPl6U94zTXcBXo-UYD2EY
Masa II: https://mega.co.nz/#!9d8lHSSJ!rPKUujosF4GDRDQEgGquq9VVQYYTyiLtE2nnn4St8Wo

Potenciometría directa: https://mega.co.nz/#!dE1gHSIK!nNBp_9SrqhmE5ZydbqIw636boG7U-kz_ZemaNOnaBRg

Titulaciones potenciométricas: https://mega.co.nz/#!Ed9igKCK!f2biLJ9cMULTr_cvtficzjXDVy75A0Fe2F-rsV9CfVg

Titulaciones en medios no acuosos: https://mega.co.nz/#!RFNmyayS!2KYUxsbQ2C5LUbq1VtlZDW7vTQgegOVVsh2W29MxfjU

Adicionales: https://mega.co.nz/#!NV9FGDKB!fLNwzakZNNV30b44p6eyQ3BNImr3_cAVNAD3TIsxEoA


martes, 26 de agosto de 2014

Gabriel Rabinovich: "Mi sueño máximo sería llegar a traducir nuestros descubrimientos en algo que mejore la calidad de vida de las personas"

video



La madrugada del martes 23 de marzo de 2004 marcó un antes y un después en la vida de Gabriel Rabinovich. Ese día, periodistas que llamaban desde Alemania y Francia, y también de programas radiales porteños, lo despertaron a las 4 para preguntarle sobre uno de sus descubrimientos, que había sido publicado nada menos que en la tapa de la revista Cancer Cell. Junto con su equipo, Rabinovich había develado cómo hacen los tumores para ser invisibles para el sistema inmune. "No entendía nada", confiesa hoy.
Una de las estrellas más rutilantes del escenario científico local, Rabinovich es un investigador totalmente made in Argentina. Nacido en Villa Cabrera, Córdoba, se formó en la Universidad Nacional de esa provincia, y realizó su doctorado y su posdoctorado en el país. "Siempre había soñado con formarme en el exterior, pero aunque gané una beca Pew para ir a trabajar en los Institutos Nacionales de Salud de los Estados Unidos, con uno de los personajes más importantes del mundo en muerte celular programada, no pude ir por cuestiones familiares", recuerda.
Sin embargo, a poco de comenzar su tesis, identificó, purificó y caracterizó una proteína, la Galectina I (Gal I), que resultó ser una suerte de llave maestra del cáncer y las enfermedades autoinmunes: en el primer caso impide la acción de los linfocitos T que podrían destruir los tumores, y en el segundo podría ayudar a detener el ataque del sistema inmune contra el organismo. A los 44 años es vicedirector del Instituto de Biología y Medicina Experimental del Conicet, y dirige un grupo de 27 jóvenes científicos cuyos hallazgos están protegidos por ocho patentes y ya dieron lugar al desarrollo de un anticuerpo monoclonal que resultó efectivo para detener el crecimiento de diferentes tipos de tumores en ratones. Ahora, el desarrollo de este anticuerpo para su uso en humanos se está negociando con laboratorios internacionales.

-¿Fuiste un científico precoz o llegaste a la investigación por casualidad?
-Yo me crié en una farmacia. Mi mamá era farmacéutica y mi papá, contador. Me gustaba atender al público y los ayudaba cuando estaban de turno, pero en esa época nunca pensé en ser científico. En realidad, jugaba a ser maestro y me hubiera encantado dedicarme a la medicina, pero era muy sensible. Después, en el secundario, me encantaba mi profesora de química. Creo que me dediqué a la ciencia, pero también me hubiera gustado ser médico.

-¿Eras el típico traga?
-Me gustaba estudiar mucho, pero curiosamente siempre me atrajeron las materias humanísticas: cantaba en un coro, bailaba, hacía teatro. No creía que podría dedicarme a la ciencia. Admiraba muchísimo a mis profesores de la Facultad, pero pensaba que yo era demasiado disperso...

-¿Cuándo se produjo el momento de decisión?
-Mi vida estuvo marcada por gente que fue muy generosa conmigo, como las Fundaciones Sales, y Bunge y Born, particularmente la familia Ferioli y Ostry, Eduardo Charreau en el Ibyme y el Conicet. Después de recibirme, Carlos Landa, mi primer mentor, me dio un lugar en su laboratorio. Confió en mí más que yo mismo. Él estudiaba el sistema nervioso y la retina del pollo. Y aunque a mí me interesaba la salud humana, cuando entré en su laboratorio quedé fascinado. Él me enseñó la parte lúdica de la investigación. Mi tarea consistía en inyectar conejos con distintas fracciones de hígado o de retina de pollo, y generar y purificar anticuerpos. Al finalizar ese año, Carlos decidió dejar la ciencia básica, pero me dijo que podía llevarme los anticuerpos. Los puse en el freezer de la casa de mis padres, en tubitos de rollos de película fotográfica.

-¿Qué papel jugaron esos anticuerpos en tu carrera posterior?
-Empecé mi tesis y al principio no se me ocurría nada interesante. Pero hablando con Clelia Riera, mi segunda mentora y directora de tesis, y con Carlos recordé los tubitos que había dejado en el freezer. Y una noche, utilizando uno de esos anticuerpos, apareció una proteína diferente. Nunca nadie había estudiado su función, particularmente en el sistema inmunológico. Después, toda mi tesis fue aislar y caracterizar bioquímicamente esta proteína que se llamaría Galectina I.

-¿Por qué es tan importante esta proteína?
-Una de las cosas que vi durante mi doctorado es que cuando ponía Gal I y junto a linfocitos T [células del sistema inmune encargadas de atacar bacterias, virus, hongos, tejidos trasplantados], éstos se morían. Luego, junto con mi primera tesista, Nati Rubinstein, pudimos probar que los tumores, que expresan mucha más Galectina I que una célula normal, la utilizan para escaparse de la respuesta inmune. Están rodeados de linfocitos, pero éstos no pueden matar al tumor. Cuando bloqueábamos la producción de la proteína, los linfocitos T no morían, aumentaban su cantidad y lo eliminaban.

-¿Y qué papel cumple en la autoinmunidad?
-Durante estos años fuimos descubriendo muchas más facetas de Gal I. Con Marta Toscano vimos que esta proteína no mata cualquier célula inmune: mueren solamente las malas en la autoinmunidad, los linfocitos Th1 y Th17 [que atacan al propio organismo]. Las otras, las células vírgenes, que nos permiten defendernos contra bacterias o parásitos, no se mueren. Marta empezó a hacer su tesis doctoral y detectó que estas células, a medida que se van diferenciando, se van cubriendo de azúcares necesarios para que Gal I interactúe con ellas. En cambio, el resto se cubre de otro escudo, que es el ácido siálico, un carbohidrato especial que inhibe la acción de Gal I.

-¿Es decir que, en cierto modo, mata a villanos y a héroes?
-Esta proteína destruye los linfocitos que nos son nocivos, pero mantiene los que nos van a defender frente a las infecciones. Con Juan Martín Ilarregui descubrimos que hay otras células en el sistema inmunológico, las dendríticas, que tampoco son destruidas por Gal I; les permite generar un sistema regulatorio que resuelve la respuesta inmune. Básicamente se trata de una proteína que promueve equilibrio en el sistema inmunológico. Elimina las defensas negativas que causan autoinmunidad, cuando la respuesta inmunológica ya se cumplió, y es usurpada por el tumor para burlarse del sistema inmune.

-¿Eso los llevó a pensar en una terapia?
-Un día me llamó la doctora Margaret Shipp, del Dana Farber Cancer Institute, de Harvard, y empezamos una colaboración que generó la idea de intentar bloquear Gal I en cáncer para que los linfocitos T aumenten y eliminen el tumor. Por otro, en nuestro laboratorio pensamos utilizarla para eliminar linfocitos T en enfermedades autoinmunes.

-¿Cómo podrían hacerlo?
-Decidimos desarrollar un anticuerpo monoclonal antigalectina I. Nos costó mucho trabajo, hasta que encontramos uno fantástico. Diego Croci, que investigaba procesos de vascularización de tumores, lo probó en diferentes cánceres y mostró que bloquea el crecimiento tumoral (se reducen en más del 60%), aumenta la respuesta inmune y disminuye la vascularización. Mariana Salatino y Tomás Dalotto mostraron que este paradigma también es útil en cáncer de mama.

-Es decir que estás cumpliendo con el ideal de la investigación biomédica: ir de la mesada del laboratorio a la cama del paciente.
-¡Ojalá! Estamos tratando de licenciar las patentes que protegen estos hallazgos. Hay compañías interesadas. Ellas humanizarían el anticuerpo monoclonal y harían los estudios clínicos. En este sentido, hace dos años se publicaron en The New England Journal of Medicine dos trabajos sobre anticuerpos que reconocen otras moléculas involucradas en el escape tumoral, que al ser bloqueados estimulan la respuesta inmune. La sobrevida global de los pacientes tratados con estos anticuerpos monoclonales aumenta muchísimo. Todo indica que vamos por el buen camino. Uno se imagina que, en un futuro, el armamento farmacológico en oncología estará compuesto por un cóctel de inhibidores que aumenten la respuesta inmune, por un lado; que reduzcan la angiogénesis [formación de vasos sanguíneos], por el otro, y quizá con una quimioterapia, pero en bajas dosis para matar las células tumorales. Mi sueño máximo sería llegar a traducir nuestros descubrimientos en algo que mejore la calidad de vida de las personas.

Bio:

  • Profesión: científico
    Edad: 44 años
    Es editor de una docena de revistas científicas y profesor visitante de las universidades de Harvard, de Maryland y de París. Recibió la beca Guggenheim, los premios Houssay y Bunge y Born a jóvenes investigadores, de la Fundación Mizutani (en Japón), de la Academia Mundial de las Ciencias (TWAS) y el Konex de Platino, entre otros.

Fuentes:

Nota periodística del diario La Nación. Periodista: Nora Bär. 25/11/2013.
http://www.lanacion.com.ar/1641731-gabriel-rabinovich

Nota en Radio Mitre (26/08/2014): http://secciones.cienradios.com.ar/radiomitre/2014/08/26/premio-bunge-y-born-al-cientifico-argentino-gabriel-rabinovich/

jueves, 21 de agosto de 2014

Estructura general de los ribosomas en procariontes y eucariontes.

La presencia del ribosoma en el proceso de traducción es fundamental porque, por un lado constituye un sitio físico donde ocurre todo este proceso y por otro lado tiene también función catalítica, por lo cual es fundamental para el proceso. Si no existe esta estructura y todos los componentes que intervienen en el proceso de traducción se tuvieran que encontrar al azar en el citosol, sería muchísimo menos eficiente.


En la figura se comparan ribosomas procariontes y eucariontes. Ambos tipos de ribosomas tienen dos subunidades, mayor y menor. Son muy similares en cuanto a estructura pero tienen algunas diferencias en cuanto a la longitud del ARN y a las proteínas que forman parte de estas unidades ribosomales. También es diferente el tamaño. Generalmente el tamaño de cada subunidad o del ribosoma completo se mide en Svedberg (S) que es una unidad de sedimentación (da una idea de la velocidad de sedimentación o del tamaño de esa partícula: mayor S, mayor PM).
En la subunidad mayor están presentes un ARNr que se denomina ARNr grande (principal ARNr que está en la subunidad mayor), en procariontes es 23S y en eucariontes 28S. También hay ARNr del tipo 5S tanto en eucariontes como en procariontes y además en los eucariontes está presente un tipo de ARN pequeño que es 5,8S que se une de manera complementaria, por apareamiento de bases, con el ARN grande, además hay proteínas.
En el caso de la subunidad pequeña, tiene un ARN que se denomina ARNr pequeñpo. Es 16S en procariontes y 18S en eucariontes.
Finalmente, hay dos subunidades ribosomales mayores: 50S en la subunidad mayor en procariontes y 60S en la subunidad mayor en eucariontes, y dos subunidades menores: 30S en procariontes y 40S en eucariontes.
Si bien hay diferencias en cuanto a la composición y al tamaño, las estructuras son similares y operan de manera muy similar.
El ARNr presenta estructura secundaria.

miércoles, 20 de agosto de 2014

Manual de Bioseguridad en el Laboratorio. OMS. 3° edición.


Las tres funciones del ARN en la traducción.


La traducción* es llevada a cabo por tres tipos distintos de ARN. Aquí vemos al ARNm que es el que lleva la información (que estaba codificada en el ADN) en forma de codones, que son secuencias o tripletes de bases, cada uno de los cuales corresponde a un aminoácido determinado. Cuando esto se traduzca al lenguaje de las proteínas, cada codón va a representar a un único aminoácido.
Luego está el ARNt que es muy importante porque es el que une el aminoácido que debe ingresar en la cadena polipeptídica cuando se lleva a cabo la traducción y que tiene un sitio denominado anticodón que se complementa con algún codón del ARNm.
También está el ARNr, que junto con varias proteínas forman los ribosomas, que además de ser el sitio físico donde ocurre el proceso de traducción, es importante para catalizar la formación de los enlaces peptídicos durante la formación de la proteína.

*Normalmente el proceso de traducción se lo toma como sinónimo de síntesis de proteínas, pero hay que tener en cuenta que una vez que la cadena polipeptídica termina de traducirse, debe sufrir algunas modificaciones (modificaciones químicas, plegamientos, etc) y la síntesis de proteínas implican también estos fenómenos.


Hay 61 codones que codifican para aminoácidos y 3 codones que son de terminación. Muchos aminoácidos están codificados por más de un codón, por esto decimos que el código genético es degenerado. Todas las cadenas polipeptídicas comienzan con una metionina (Met) iniciadora y hay un único codón que codifica para esa metionina iniciadora: AUG. También hay un ARNt específico para la Met iniciadora que es diferente al ARNt de una Met que va a ubicarse en cualquier otro sitio de la cadena polipeptídica.

Marco de lectura: secuencia de codones en el ARNm que transcurre desde un codón de inicio específico hasta un codón de terminación.

La figura es un ejemplo de una misma proteína leída en dos marcos distintos. Se muestra una parte interna de la secuencia de la proteína. El sitio de inicio (codón AUG) no se muestra.
Por lo general, los ARNm se leen correctamente en un único marco de lectura, porque puede suceder que en los otros marcos posibles surgen codones stop haciendo que se obtenga una proteína no funcional, pero en algunas especies, en algunos tipos de células, la lectura a distintos marcos de lectura de ARN hace que se sinteticen proteínas diferentes, y es una manera de regular la expresión génica.

El código genético es universal, es decir, es el mismo para distintos tipos de células. Esto apoya la idea de un origen común a todas las células.

Sin embargo hay excepciones: el significado de cada codón es el mismo en la mayoría de los organismos conocidos.



En general la mayoría de estas excepciones están dadas porque un codón que en el código genético universal es un codón stop, en el código inusual codifica para un aminoácido.







 Estructura de los ARNt.





En general todas las moléculas de ARNt tienen una longitud entre 70-80 nucleótidos, la secuencia de todos los ARNt es variable entre ellos pero sin embargo todos presentan la misma estructura tridimensional.
En general todos poseen cuatro tallos formados por apareamientos complementarios entre pares de bases y tres bucles.
Una característica también diferencial de los ARNt es que presentan modificaciones químicas en sus bases, por ejemplo, en el bucle D hay presencia de dihidrouridina, en el bucle TψCG hay presencia de ribotimidina y de seudouridina, estas son modificaciones químicas que le dan distintas propiedades a esas moléculas.
El bucle anticodón, que también puede presentar modificaciones químicas y se caracteriza por la presencia de inosina (surge de la desaminación del nucleótido adenina), es el bucle que lleva la secuencia de tres bases que se aparea de manera complementaria con cada codón en el ARNm.
En el tallo que no presenta bucle, en el extremo, que se denomina tallo aceptor, es justamente donde se produce el sitio de unión del ARNm con el aminoácido correspondiente. En consecuencia, los dos sitios fundamentales de esta estructura son el tallo aceptor y el bucle anticodón. En el tallo aceptor la secuencia CCA en el extremo 3' es característica de los ARNt.


Esta figura representa una figura tridimensional de orden mayor debido a que esta estructura se pliega para dar una estructura en forma de L.

La traducción requiere un proceso decodificador de dos pasos.

Un primer paso que consiste en la unión del aminoácido específico a su ARNt específico, y un segundo paso que consiste en la unión del anticodón del ARNt con el codón ARNm correspondiente.
En el siguiente ejemplo se muestran estos dos pasos para el aminoácido Phe y obviamente para el ARNt que específicamente transporta Phe.
Este primer paso de unión del aminoácido al ARNt que reconoce Phe está catalizada por una enzima que es la aminoacil-ARNt sintetasa específica para cada aminoácido. Esta enzima posee dos sitios fundamentales: un sitio de unión para el aminoácido, en este caso para Phe, y un sitio de unión para el ARNt que une Phe a nivel del extremo 3'. Esta unión catalizada por esta enzima consiste en la formación de un enlace éster de alta energía (se dice que el aminoácido se activa mediante esta unión) y el enlace éster se produce entre el grupo carboxilo del carbono α del aminoácido con el -OH 3' del ARNt. Por ser un enlace de alta energía luego va a favorecer la formación posterior, en el proceso de traducción, de los enlaces peptídicos.
Esta es la manera en que se forma un aminoacil-ARNt.


Luego ocurre el segundo paso que es la unión específica entre el anticodón de este ARNt con su codón complementario en el ARNm, obviamente un codón que codifica para Phe.



El número de ARNt en la mayoría de las células es superior al número de aminoácidos utilizados en la síntesis proteica y diferentes al número de codones de aminoácidos del código genético. Entonces un mismo aminoácido puede ser reconocido por distintos ARNt.
Podemos suponer que existen tantos ARNt como codones que existen en el código genético que codifican para aminoácidos, pero sin embargo en número es menor a 61 y esto se debe a que existen en algunos casos un apareamiento no estándar de bases entre el codón y el anticodón en la posición de balanceo.
Hay una posición específica que es la posición de balanceo, podemos hablar de la posición de balanceo tanto en la secuencia anticodón del ARNt como en el codón del ARNm.

Si lo vemos desde el punto de vista desde el ARNt, la posición de balanceo es la posición número 1 del anticodón. Si las bases que se ven en el cuadrito están en la posición de balanceo puede ocurrir lo siguiente: con C o A en esta posición ocurre al apareamiento estándar de bases, es decir, C≡G y A=U. Pero si, por ejemplo, tenemos G en esa posición de balanceo, puede reconocer en el codón del mensajero tanto C como U.
Recordemos que en el núcleo del anticodón puede haber I (I se puede aparear con C, A y U), con lo cual hay más posibilidades.
Entonces, el apareamiento de balanceo permite a un ARNt reconocer más de un codón de ARNm.
Lo que sí sucede es que todos esos distintos codones codifican para un mismo aminoácido siempre.
Esto mismo puede ocurrir desde el punto de vista del ARNm: el apareamiento de balanceo permite que un codón sea reconocido por más de una clase de ARNt.

lunes, 18 de agosto de 2014

Control de la expresión génica en procariontes.

Hay distintos niveles en los cuales se pueden regular la expresión génica, pero generalmente, y esto es válido tanto para los procariontes como para los eucariontes, el principal mecanismo para regular la transcripción o la expresión de un gen es regulando la iniciación de la transcripción (si empieza o no la transcripción de ese gen).
  • Iniciación de la transcripción→ principal mecanismo para controlar la producción de la proteína codificada en una célula.
  • Expresión génica en procariontes→ regulada según los cambios en los medios nutricional y físico.

Frente a cambios en el medio, cambios en los nutrientes, se va a expresar o no determinada proteína.

Las bacterias sólo sintetizan las proteínas de su proteoma requeridas para sobrevivir en condiciones determinadas → ahorro de energía!!!



Dado que los genes que forman parte del operón tienen un único sitio de inicio de la transcripción, podemos decir que esos genes están regulados de manera coordinada: o se transcriben todos o ninguno. Este sistema de operón está, además, regulado por proteínas adicionales que pueden ser proteínas represoras o proteínas activadoras de la transcripción.

Regulación de la transcripción a partir del operón lac de E. coli.

El operón lac codifica las enzimas requeridas para la degradación de lactosa. Las bacterias pueden utilizar la degradación de los hidratos de carbono para obtener energía.
La glucosa es la principal fuente de energía si está presente en el medio. Pero la lactosa también es un azúcar que alternativamente puede servir como medio para obtener energía.



En el operón lac están codificadas todas las enzimas que intervienen en esa vía metabólica, pero en la figura se representa únicamente la primera enzima de esa vía metabólica que es la lacZ.
El operón tiene otras secuencias importantes: tiene una secuencia promotora que donde se va a unir la ARNpol (sitio reconocido por la ARNpol para comenzar la transcripción). Además tiene otras dos regiones reguladoras: una que se esquematiza en amarillo que es la secuencia operador y la otra que se esquematiza en verde que es el sitio CAP (CAP: proteína activadora de catabolito). El sitio operador va a permitir la unión de una proteína represora, mientras que el sitio CAP va a permitir la unión de una proteína activadora. De esta manera se va a regular la transcripción de este operón. En este caso la enzima que transcribe este ARNm es la polimerasa asociada a una subunidad que la σ70(Pol-σ70, polimerasa bacteriana asociada a esta subunidad), que cataliza la transcripción cuando las secuencias reguladoras se encuentran próximas al promotor.

Podemos tener distintas condiciones:

(a) Presencia de glucosa y ausencia de lactosa:



Si hay ausencia de lactosa no tiene sentido que la célula sintetice las proteínas que degradan lactosa, con lo cual lo que sucede en esta situación es que la proteína represora (que se denomina represor lac), posee una conformación tal que se une con alta afinidad al sitio operador: la ARNpol no puede unirse al operador y comenzar la transcripción del gen, en consecuencia no hay transcripción del ARNm.

(b) Presencia de glucosa y lactosa:


Cuando los dos azúcares se encuentran presentes en el medio, preferentemente se usa glucosa, pero al haber lactosa, la lactora se une a la proteína represora y cambia su conformación perdiendo así afinidad por el sitio operador, entonces la ARNpol-σ70 se une al promotor y puede transcribir, pero en este caso el nivel de transcripción es mínimo.

(c) Presencia de lactosa y ausencia de glucosa:

Cuando disminuye el nivel de glucosa en estas células, aumenta la producción de AMPc (molécula segundo mensajero intracelular), que cuando hay glucosa está reducido.
En esta situación hay lactosa en el medio por lo tanto la lactosa se une a la molécula represora que cambia su conformación y se disocia del sitio operador permitiendo que la ARNpol-σ70 se una al promotor y transcriba. Pero además, al haber un nivel aumentado de AMPc, este AMPc tiene la capacidad de unirse a la CAP modificando la conformación de CAP con lo cual, en esta conformación particular, esta proteína puede unirse al sitio CAP, estimulando la transcripción mediada por la ARNpol-σ70. En este caso el nivel de transcripción es máximo.



Los distintos promotores que se encuentran en las células eucariontes o procariontes son bastante similares entre sí aunque la secuencia de cada uno de ellos varía, y de acuerdo a esa secuencia, variará la frecuencia con la cual se inicia la transcripción. Es decir, según el promotor varía la velocidad de transcripción, de modo tal que si el promotor es un promotor débil, tendrá una baja velocidad de transcripción, que es el caso del operón lac. Es por esto que si no hay un activador, la ARNpol-σ70transcribe a una baja velocidad. Sin embargo, en presencia de un activador, ese promotor puede aumentar la velocidad de transcripción de modo tal que la transcripción es máxima.
Hay promotores fuertes que sin la presencia de una proteína activadora ya tiene una alta velocidad de transcripción.

Este esquema representa la ARNpol bacteriana. Se representan las dos subunidades más importantes (β) y las dos subunidades α; estas subunidades pueden interactuar también con otras subunidades especiales, en este caso una subunidad que se denomina σ o factor σ, en el caso del operón lac, la polimerasa se llama ARNpol asociada a σ70.
La ARNpol se asocia a la subunidad σ70 cuando este operón está regulado por represores y activadores que se unen al ADN cerca de la región donde se une la polimerasa, o sea, cerca del promotor. Sin embargo, hay otro factor σ, que es el factor σ54, que es un factor que se asocia a la ARNpol cuando los sitios activadores o represores se encuentran alejados del sitio de inicio (promotor): se necesita otro tipo de subunidad para que se pueda llevar a cabo la transcripción.


Un ejemplo de reguladores de esta polimerasa asociada a la subunidad σ54 es la proteína NtrC o proteína C reguladora de nitrógeno. Este sistema que se ilustra a continuación corresponde al gen que codifica para glutamina sintasa (glnA) en los procariontes. A diferencia del operón lac, la ARNpol está asociada al factor σ54, porque los sitios reguladores, en este caso son sitios amplificadores o que estimulan la transcripción, se encuentran lejos del sitio promotor (sitio de inicio).



 Esta proteína NtrC tiene capacidad de unirse al sitio amplificador pero en esta conformación es inactiva. Para activarla existe otra proteína reguladora que es la proteína NtrB que tiene actividad de cinasa, que lo hace es fosforilar a NtrC y de esa manera activarla.
Cuando NtrC es fosforilada y se activa se produce un cambio conformacional que favorece la interacción de este amplificador con la ARNpol-σ54 : el ADN se dobla para justamente lograr que esta proteína activadora interactúe directamente con la ARNpol-σ54.
Esta manera de regular la expresión de este gen o genes que codifican para las enzimas que se necesitan para la síntesis de glutamina es muy similar a lo que ocurre en los eucariontes, donde en general, los sitios para los activadores y represores están alejados del promotor, y la estructura que se forma es similar a esta.


Microfotografía electrónica de un fragmento de restricción de ADN con un dímero de NtrC fosforilado unido a la región amplificadora, cerca de un extremo, y la ARNpol-σ54 unida al promotor glnA cerca del otro extremo.

Microfotografía electrónica del mismo preparado de fragmentos que muestra los dímeros de NtrC y la polimerasa σ54 unidos entre sí con el ADN interpuesto formando un bucle entre ambos.

domingo, 17 de agosto de 2014

Corte y empalme alternativo del ARN.

El corte y empalme o splicing es el mecanismo que permite eliminar los intrones y unir los exones para tener el ARNm funcional. Cuando se habla de corte y empalme alternativo, nos referimos a que hay diferentes maneras de que se produzca ese corte y empalme. Esto es muy importante sobre todo en proteínas que tienen muchos exones.


Se ve representado el gen de la fibronectina, que es una proteína de la MEC. Lo que se ve en diferentes colores son los distintos exones, lo que se ve con rayitas negras representan los intrones que luego serán eliminados.

Este gen, una vez que se transcribe al ARN, el transcripto primario puede ser procesado de maneras alternativas, y eso muchas veces difiere según el tipo celular. Por ejemplo, en este caso, en los fibroblastos, los dos exones representados en verde (EIIIB y EIIIA) quedan incluidos, a nivel de esos exones está codificada la información para sitios de unión con proteínas de la MEC, cuando ese ARNm pasa a proteína estos exones forman dominios específicos que permiten que esta molécula se una a otras proteínas de la MEC. Sin embargo, a nivel de los hepatocitos, se excluyen estos dos exones, con lo cual esa fibronectina va a circular y no queda adherida a la matriz.
Los productos que se obtienen por splicing alternativo del ARN se denominan isoformas. Son proteínas que están emparentadas pero tienen distintas propiedades funcionales.